SOME APPROXIMATE SOLUTIONS OF STEFAN'S PROBLEM
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We obtain approximate solutions of Stefan's problem for various boundary conditions and
for an initial temperature equal to the phase change temperature; the distribution of tem-
perature along a coordinate direction in a region of increasing phase is given in the form
of a quadratic expression,

For practical purposes approximate solutions of Stefan's problem are usually obtained assuming a
linear temperature distribution in a region of increasing phase [3, 4]. The classical solutions of Lamé
—Clapeyron and Stefan (1)are only suitable for a boundary condition of the first kind. We seek a solution
for the temperature of an increasing phase in the trinormal form

T = Ax*+ Bx+ C, (1)

where the function C(t) has the physical meaning of temperature of the exterior surface of the body. We
assume this surface to be planar and fo confain the coordinate origin; the OX axis is taken in a direction
along the interior normal to this surface. The initial temperature, and hence also the temperature at all
points of decreasing phase, at an arbitrary time instant are assumed to be equal to the phase transition
temperature, which we take as our origin for temperature calculations.

Determining the solutions of nonlinear problems of heat and mass transfer in the form (1) usually
proves to be sufficiently accurate for practical purposes ([5], et al.). The initial conditions we assume cor-
respond, to one degree or another, to that for cast hardening, to the deepening vaporization zone in the
drying of a capillary-porous body [2], and to other thermophysical processes.

The problem in question may be described as follows:

T (x, ) 0T (x 1) (2)
a——a— = 0L x <),
T(x, 0)=0, (3)
Tx, H=0 (x>8), (4)
_LOTGE Yy . dE
7»~———ax % h (5)

In writing the Stefan condition (5) we assume that » > 0 for absorpfion and that » < 0 when heat is
liberated during a phase transition. The Eqgs. (2)-(5) must be supplemented by a boundary condition relat-
ing the body and its surrounding medium. The Eqs. (3) and (4) superimpose the condition

E(0)=0 (52)
on the motion of the boundary separating the phases.

The coefficients A, B, and C mﬁst be chosen so that at x = £ the Eq. (2) becomes an identity, i.e.,
as is evident from Eqgs. (1) and (2), the following equation must hold for the unknown functions of the time:

2aA = &2 (dAjdt) + & (dB/dt) + dC/dt. (6)
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For the approximation (1) the conditions (5) and (4) assume the form
A(2AE + By — —x 25, (7
df

AE* 4 B+ C = 0. (8)

On the surface x = 0 of the body we are given a boundary condition of the third kind:
— A [T (0, H)/ox] = a(P—C),
which, for the approximation (1), may be written as

B =ak 1 {C —P). (9).

From Egs. (7), (8), and (9) we find

A=(2x+a§)f1(ﬁe__"_.ﬁg__ﬁ’i,ﬁ§.), (10)
3
C=(2ht+ag)? (an + xg—dé) (11)
=)

Upon substituting the Eqgs. (9), (10}, and (11) into Eq. (6), we obtain, after involved but elementary
manipulations, a differential equation for the function &(t):

B (BN oo —1[“_1[’__}_ ax\ df
x(dt) dEhEAT I (§+%)dt]'v

(12)

In solving this equation we consider four cases. In the first case we neglect the volumetric heat
capacity of the body, i.e., we leta — «=, Integrating the equation obtained as a result of passing to the
limit in Eq. (12), we obtain, subject to the condition (5a), the solution

= I/(%)Z wpy (13).

%
which, in dimensionless quantities, takes the form
= — 14 (1 + 2A7)2,
In the second case we neglect the heat capacity and assume that a boundary condition of the first kind
relates the body with the surrounding medium, i.e., weleta — =, ¢ = «,
The solution (13) is then transformed into the equation
E= (2 P2, or  E=w. 2(af)”,
where the dimensionless coefficient of proportionality is given by
w = (0.5A)2, (14)
In the third case we consider solving our problem by using the approximation (1), but with a boundary

condition of the first kind, i.e., for o — =, As a result of the corresponding passage to the limit, we
obtain from Egs. (9), (10), and (11)

a-F % & (15)
e o’

B & _ 2P (16)
A dt g

c=p. | (17)

As a result of integrating the equation obtained by letting @ — « in Eq. (12), we obtain, subject to the

condition (5a), the solution
g:‘/Q(-a+ l/a““ 2“ip)t.- (18)
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If in Eq. (18) we divide the coefficient of vt by 2V/a, we obtain
w=1[05 (VT4 2A —1)]". (19)

In the figure we show the graph of w =w(A), calculated in accord with Egs. (14) and (19), and also
the graph obtained as the result of graphically solving the transcendental equation derived from the Lamé
—Clapeyron solution ([1], p. 424). In comparing both graphs it is evident that for determining the law of
motion of the phase separation boundary our approximate solution is no worse than that obtamed by the Lamé
—Clapeyron method,

Finally, we consider the fourth case, the solution of Eq. (12) in its general form. Writing Eq. (12)
in dimensionless variables, we find '

ﬂ:_l'*‘"_HlTrQAM)l/z__l]_ (20)
dt . n(2+m) (1 4y

We make the change of variables

(I + )
and, noting that when 7 = 0 the new variable, by virtue of the condition (5a), is equal to 1, we find the integ-

ral of Eq. (20) to be
r:—l—-[ w1 1 n VTFRA+u)(VT+2A—1) 1 ] 21)
2 -

I+2a—uwr 2VTI12h  (VIt2A—u)(VIi2at1) A
We return now to the boundary condition of‘the second kind, i.e.,
— &[0T (0, 1)/0x] = Q.
In the expression (1), obviously,

5__Q (22)

A

Adjoining the expression (22) to the Eqgs. (6)-(9) and solving the resulting system, we obtain

o dg (23)
A= Y-
2ME (Q : dtj
c:i(xig_ +Q) (24)
24 A
% a A NE (25)
dt 2% [(”“ ax > 1]‘

In Eq. (25) we now change over to the dimensionless quantities £ and 6, and we then integrate the
equation with the aid of the substitution z =1 + 4¢. TUpon reverting to the variables ¢ and 6, we may write
the integral of this equation as follows:

246 = [2(1 +- 49 +3(1 4- 40— 5]. (26)
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When the volumetric heat capacity is small, i.e,, when the quantity a is large, the dimensionless
coordinate £ < 1, Replacing, on the basis of this condition, the right side of Eq, (26) by its approximate
expression, we obtain

c = 69 or E = Q'K/_lt

In view of the conditions (3) and (4), the solutions we have obtained are suitable for both a semi-~
bounded body and for an unbounded plate when these latter interact symmetrically with the surrounding
medium, The solutions for a sphere and for a long cylinder can be obtained by replacing Eq. (2) by the
equation for the corresponding body. Solutions can be obtained for exterior boundary conditions which are
monotone functions of the time and also when the thermophysical coefficients of the increasing phase depend
linearly on the temperature. '

NOTATION

t is the time;

X is the coordinate;

£ =41t is the coordinate of phase interface;

T(x, t) is the temperature of: body;

a and A are the thermal diffusivity and thermal conductivity
of growing phase;

n is the volumetric heat of change of phase;

P =const is the temperature of medium (at boundary condi-

: tions of the first and third kinds);

Q = const is the density of heat flux at the body — medium inter-
face (at boundary condition of the second kind);|

A, B,and C ' are the time-depehdent coefficients;

o is the heat-transfer coefficient;

A=AP/an,n =at/A, T=ackt/AL, ¢ = Qi/an,6 = Q*%/an? are the dimensionless characteristics of the pro-
cess . :
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